

SIHAN LIU

(201) 238-3749 // sihan.liu@nyu.edu // linkedin.com/in/sihanliu643

EDUCATION

Expected 12/23	NEW YORK UNIVERSITY The Courant Institute of Mathematical Sciences M.S. in Mathematics in Finance	New York, NY
09/18 - 06/22	NEW YORK UNIVERSITY SHANGHAI B.S., Double Major in Honors Mathematics and Data Science	Shanghai, China

- **Forthcoming Coursework:** portfolio theory, risk management, Fama-French, Black Scholes, Monte Carlo simulation, stochastic calculus, Hull-White model
- **Coursework:** linear algebra, mathematical statistics, Brownian motion, law of large numbers, machine learning, data structures, algorithms, databases
- **Honors/Awards:** Dean's list for 4 years, Latin Honors Cum Laude

EXPERIENCE

12/21 - 01/22	GUOTAI JUNAN SECURITIES CO., LTD Quantitative Research Intern	Shanghai, China (remote)
06/21 - 08/21	ATOS INFORMATION TECHNOLOGY Data Visualization Intern	Chengdu, China
08/20 - 09/20	SICHUAN WANYI ENERGY TECHNOLOGY CO., LTD. Data Mining Intern	Chengdu, China

- Evaluated Chinese stock market's key indicators (e.g., major indices, cross-sectional volatility, stock turnover rate); wrote market overview report
- Built backtest system using Python, with modules including data collection, data preprocessing, trading signal detection, data visualization and performance analysis
- Backtested double moving average strategy and achieved 8.9% annualized return as well as 23% max drawdown
- Collected information from multiple web databases, cleaned and organized it into Excel tables, as well as generated frequent reports to facilitate manager's monitoring of team productivity
- Created dashboards to display cleaned data clearly and concisely
- Used VBA and Power Query to automatically generate daily reports and send emails; results: reductions to 25% of production time and 17% of computer memory used by data
- Collaborated with team to build ML model that helped clients extract information from images
- Used Python to generate synthetic optical character recognition dataset comprising images of Chinese character lines in various backgrounds
- Standardized 300+ images in Python; corrected thousands of mismatched labels in image dataset

PROJECTS

02/22 - 05/22	NEW YORK UNIVERSITY SHANGHAI Derivatives Pricing: Options Price Fluctuation Simulation with Black-Scholes Formula (Python)	Shanghai, China
05/21 - 06/21	Machine Learning: Music Classification Based on Emotions (Python)	

- Implemented Black-Scholes formula on European calls; collected contract information and historical prices for 100+ Chinese options; simulated price fluctuations from list to maturity dates
- Applied several models to estimate volatility of options, including moving average, exponentially moving average, and GARCH(1, 1)
- Designed conventional machine learning models including SVM, decision trees, and random forest, to classify musical pieces into 3 categories: sad, calm, energetic
- Improved model performance with parameter tuning, PCA, oversampling, stacking, and cross-validation; achieved precision score of 88%

COMPUTATIONAL SKILLS / OTHER

Programming Languages: Proficient in Python, SQL, Java, and Excel; basic in VBA

Affiliations/Certifications: Microeconomics and corporate finance from edX

Languages: English (fluent), Mandarin (native)