KAIWEN (KAI) ZHOU

(917) 497-9701 // kaiwen.zhou@nyu.edu // linkedin.com/in/kaiwen-zhou // https://github.com/kaiwen-zhou

EDUCATION

Expected 05/25	NEW YORK UNIVERSITY The Courant Institute of Mathematical Sciences M.S. in Mathematics in Finance	New York, NY	
	• <i>Expected Coursework:</i> time series analysis, alternative data, fixed income, BARRA-style Implicit Risk-Factor Model, EM algorithm, Hidden Markov Models (HMMs), Gibbs Sampling		
09/19 - 05/23	 NEW YORK UNIVERSITY The Courant Institute of Mathematical Sciences B.A. Honors in Mathematics, Minor in Computer Science Undergraduate Coursework: probability, bayesian statistics, SVD, PC, numerical methods, linear & non-linear optimization, regression, ensen Graduate Coursework: portfolio theory, Ito's Lemma, Black-Scholes, Carlo, PDE implicit scheme, local volatility, VaR, GARCH, Feature Mathematical, PDE implicit scheme, local volatility, VaR, GARCH, Feature Mathematical, Phi Better 	New York, NY A, differential equations, nbling, clustering, CNN Hull-White model, Monte ap Regression, AdaBoost ta Kappa	
PROJECTS			
	NYU COURANT	New York, NY	
01/23 - 05/23	 Analysis of Portfolio Allocation Schemes (Python) Analyzed CAPM theory, mean-variance optimization, APT model and Black-Litterman model and summarized findings in report Adopted and implemented Attilio Meucci's mean-variance optimization (MVO) framework proposed in his book <i>Risk and Portfolio Allocation</i> Applied APT model that generated views for latent factors and used that to predict mean and variance of return via Bayesian scheme Backtested and compared performance of different MVO and Black-Litterman-APT allocation schemes using 10 years' weekly data; derived insightful findings 		
01/22 - 05/22	 Pricing an Exotic Option Using Hull-White Model (Python) Developed an object-oriented programming (OOP) framework for effice web-scraping, incorporating data such as Nikkei-225 index and US Tree Calibrated Hull-White model parameters using cubic splines to determine dynamics for essential calibration Generated final price approximation for Quanto Option using Monte-C 	I (Python) OP) framework for efficient data collection and 2i-225 index and US Treasury yield curve cubic splines to determine key values and o Option using Monte-Carlo simulation	
09/22 - 12/22	 Prediction of a 4-Fingered Robot Hand Given RGB+Depth Images (Pyth Designed and implemented convolutional neural network (CNN) mode positions from RGBD images, achieving an RMSE error of less than 0 Explored various neural network structures and fine-tuned hyperparam to construct an optimized model 	tion of a 4-Fingered Robot Hand Given RGB+Depth Images (Python) Designed and implemented convolutional neural network (CNN) model to predict finger positions from RGBD images, achieving an RMSE error of less than 0.00414 Explored various neural network structures and fine-tuned hyperparameters through grid search o construct an optimized model	
01/23 - 05/23	 Image Recovering and Line Fitting With Different Machine Learning To Evaluated performance of random forest, gradient boosting, and feature amplified data or regularization using 5-fold grid search cross-validation Compared performance of exponential and B-spline feature maps on repolynomial and periodic datasets 	t Machine Learning Techniques (Python) ent boosting, and feature map regressors with id search cross-validation pline feature maps on regression tasks involving	
01/23 - 05/23	 LSA-based Recommender (Python) Implemented prediction model for generating top-5 closest tweets to a tfidf_vectorizer and TruncatedSVD, as well as nltk package for lemmat 	Sommender (Python) and prediction model for generating top-5 closest tweets to a given tweet using rizer and TruncatedSVD, as well as nltk package for lemmatization	

COMPUTATIONAL SKILLS / OTHER

Programming Languages: Python, LaTeX, Java *Languages:* English (fluent), Mandarin (native)