LUCHEN (TOM) SHI

(551) 344-8613 // tom.shi@nyu.edu // www.linkedin.com/in/luchen-tom-shi/

EDUCATION

Expected 12/24 NEW YORK UNIVERSITY

The Courant Institute of Mathematical Sciences

M.S. in Mathematics in Finance

• Expected Coursework: stochastic calculus, risk and portfolio management, dynamic asset pricing, time series analysis, machine learning, computational statistics, market microstructures

09/19 - 05/23 **CORNELL UNIVERSITY**

B.A. in Mathematics, Concentration in Statistics

- *Coursework:* mathematical statistics, probability theory, stochastic calculus, stochastic processes, real analysis, machine learning, OOP and data structures, statistical learning theory
- Honors/Awards: 2023 Alibaba Global Mathematics Competition Finalist (Top 1%); 2022 • Cornell Summer Mathematics Research Grants Recipient; 2022 Cornell Deloitte Innovation Competition, 1st place

EXPERIENCE

01/24 - 07/24	 KAFANG TECHNOLOGY Shanghai, Chi (AI-driven, algorithmic trading firm) Quantitative Research Intern (Python) Analyzed stock order data to build factors with information coefficients (IC) that increased by ~17%, with Sharpe ratio of strategy increased by ~11%, covering frequencies from 10s to 90s Studied market microstructures of convertible bonds to construct signals with IC increasing by ~25% with Sharpe ratio of strategy increasing by ~13%, covering frequencies from 90s to 1,80 Developed and implemented singular value decomposition (SVD) entropy method on stock logarithmic return correlation matrices, deriving stock factors that improved average IC by ~12 Applied multivariate Hawkes process to model self-excitement effects of marketable large order arrivals, achieving 95%+ accuracy in distribution comparisons using Kolmogorov–Smirnov tes Adapted micro-price return model to predict mid-price returns over 3s windows for 50+ China shares, enhancing predictive accuracy by 19% with cubic-fitted curves 	7 D0s 2% er sts
PROJECTS		
04/23 - 08/23	 CORNELL UNIVERSITY Ithaca, N Geodesics Optimal Transport Between Gaussians for Wasserstein GAN Developed Geodesic Optimal Transport-Wasserstein GAN between Gaussians, ensuring theoretical convergences of generator parameters under gradient descent algorithm Derived upper bounds of WGAN objective functions in different scenarios, employing method such as maximum likelihood estimation (MLE) and maximum a posteriori (MAP) 	
01/22 - 12/22	 Congruence of Linear Symplectic Forms by Symplectic Groups (Mathematica) Provided complete classifications of linear symplectic form orbit space in 4 dimensions and established necessary conditions for intertwining these forms Investigated action of linear symplectomorphisms on symplectic forms, and determined invariants identified as polynomial expansion coefficients of Pfaffian terms 	
12/21 - 09/22	 Enumeration of Random Walk Positions in d-Dimensional Lattice Derived general formula to count possible final positions for n-step random walk in d-dimensional integer lattice, with constraint that final destinations had largest norm Used generating functions method and Faulhaber's formula to derive formula that counted possible positions given constraint; presented theorem through matrix representation 	

COMPUTATIONAL SKILLS / OTHER

Programming Languages: Python (advanced), C++ (elementary) Languages: English (fluent), Mandarin (native)

New York, NY

Ithaca, NY